FLOW CYTOMETRIC MONITORING IN THE WATER INDUSTRY

Applied research within industry-academia partnerships

Prof. Bart De Gusseme & Prof. Nico Boon

Ghent University (CMET)

Bart.DeGusseme@UGent.be Nico.Boon@UGent.be

CMET.UGent.be R2T.UGent.be

Monitoring water quality today

Plate counting to detect bacteria in drinking water (legislation)

Flow Cytometric Monitoring (FCM)

- FCM: faster, more complete and accurate than cultivationbased methods
- Useful to assist plate-counting, not to replace it

Flow cytometry: basic principle

Light emission

Bacterium with fluorescent stains (this study: Sybr Green and PI)

Different light detectors

Flow Cytometric Monitoring (FCM)

- Scatter plots
 - 1 dot = 1 particle (bacterium) -> more complete and accurate
 - Results ready withing minutes ⇔ plating

FCM: Fingerprinting (1)

De Roy et al. (2012). Flow cytometry for fast microbial community fingerprinting. Water Research 46(3), 907-919.

6 different brands of bottled water = 6 different communities
 = 6 different fingerprints

To practice: drinking water

- IDEA: can we use FCM fingerprinting for fast control of drinking water?
 - Determine the "reference" fingerprint of "good water"
 - Rapid analysis (minutes) and comparison of fingerprints
 allows fast screening of water samples (pipelines/networks)

To practice: drinking water

- ❖ IDEA: can we use FCM fingerprinting for fast control of drinking water?
 - Determine the "reference" fingerprint of "good water"
 - Rapid analysis (minutes) and comparison of fingerprints allows fast screening of water samples (pipelines/networks)

To practice: drinking water feeder

To practice: drinking water feeder

Same quality?
Cell count & flow cytometric fingerprinting

Downstream users: drinking water

Cell count:

Van Nevel *et al.* (2015). Flow cytometry for immediate follow-up of drinking water networks after maintenance. Water Research *submitted*.

Downstream users: drinking water

Van Nevel *et al.* (2015). Flow cytometry for immediate follow-up of drinking water networks after maintenance. Water Research *submitted*.

Process water

- Monitoring of community dynamics in closed circuits
 - Example: cooling water
 - Open cooling towers susceptible to contamination
 - Biological growth: MIC, Legionella, ...
 - Dosing of biocides (NaOCI), pH control and corrosion inhibitors

Process water

- Monitoring of community dynamics in closed circuits
 - Example: cooling water
 - Open cooling towers susceptible to contamination
 - Biological growth: MIC, Legionella, ...
 - Dosing of biocides (NaOCI), pH control and corrosion inhibitors

- ❖ IDEA: can we use FCM for on-line monitoring of closed circuits?
 - Link community dynamics to changing water quality
 - "Early-warning system" for contamination
 - On-line tool to control/steer dosing of biocides

Exploring community dynamics in cooling towers with FCM

✓ Phenotypic diversity (derived from FCM) indicates dynamic changes

Props et al. (2015). Measuring the biodiversity of microbial communities by single-cell analysis. submitted.

✓ Phenotypic diversity link with phylogenetic diversity (illumina seq.)

Props et al. (2015). Measuring the biodiversity of microbial communities by single-cell analysis. submitted.

Can we link the community dynamics to changing water quality?

Process water: on-line monitoring

- Link the community dynamics to changing water quality?
 - Determine "detection limit" of community respons
 - Different pulses in batch and continuous chemostats:
 - Yeast extract
 - TOC, N, P, salt, ...
 - Development of autosampler and staining robot for on-line application

Valerie Baetens: master thesis 2015-2016 (CMET)

IMPROVED: on-line fingerprinting

- (Process) water production and reuse
 - Control water resources: surface water, condensate, ...
 - Monitoring treatment e.g. RO permeate quality, MBR membrane integrity, ... (Lotte Vermijs, master thesis)
 - Development of early-warning system (Agathi Naka)

Distribution

- Monitoring microbial water quality and regrowth in network (Pidpa)
- Linking plantonic community to biofilm and MIC (Marjolein Minne)

End-users

- On-line control of cooling towers & circuits
- Automated steering of biocide dosing

Thanks for your attention

Benjamin Buysschaert
Ruben Props
Agathi Naka
Sam Van Nevel
Lieven Clement
Olivier Thas
and Frederik Hammes (Eawag)

Bart.DeGusseme@UGent.be Nico.Boon@UGent.be

www.CMET.UGent.be

CMET – Ghent University Coupure Links 653 B-9000 Gent, Belgium

+32 (0)9 264 59 76